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Abstract

Fractional order Nonlinear Evolution Equations (FNLEES) concerning to conformable
fractional derivative bears great importance in various fields of real world as the model to

Article Info describe underling mechanisms of nature. In this paper, we make known a new technique,
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1. Introduction

Fractional calculus originating from some speculations of Leibniz and L’Hospital in 1695 has gradually gained profound
attention of many researchers for its extensive appearance in various fields of real world. The Fractional order Nonlinear
Evolution Equations (FNLEES) and their solutions in closed form play fundamental role in describing, modeling and
predicting the underlying mechanisms related to the biology, bio-genetics, physics, solid state physics, condensed
matter physics, plasma physics, optical fibers, meteorology, oceanic phenomena, chemistry, chemical kinematics,
electromagnetic, electrical circuits, quantum mechanics, polymeric materials, neutron point kinetic model, control and
vibration, image and signal processing, system identifications, the finance, acoustics and fluid dynamics (Oldham and
Spanier, 1974; Samkoet al., 1993; Podlubny, 1999). The closed form wave solutions of these equations (Mainardi, 2010;
Baleanu et al., 2012; Yang, 2012) are greatly helpful to understand the mechanisms of the phenomena as well as their
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further application in practical life. Some attractive powerful approaches take into account in the recent research area
related to fractional derivative associated problems (He et al., 2012; He and Ji, 2019 and 2020). Therefore, it has become
the core aim in the research area of fractional related problems that how to develop a stable approach for investigating
the solutions to FNLEESs in analytical or numerical form. Many researchers have offered different approaches to
construct analytic and numerical solutions to NLEEs of fractional order as well as integer order and put them forward for
searching traveling wave solutions, such as the He-Laplace method (Li and Nadeem, 2019), the exponential decay law
(Atangana and Aguilar, 2017), the reproducing kernel method (Akgul et al., 2017), the Jacobi elliptic function method
(Aslan and Inc, 2017), the (G’/GZ)-expansion method and its various modifications (Baleanu et al., 2015; Inan etal.,
2015; Islam et al., 2018a; 2018b; and 2018c), the Exp-function method (Guner etal., 2015), the sub-equation method
(Alzaidy, 2013), the first integral method (Martinez et al., 2018), the functional variable method (Incetal., 2017), the
modified trial equation method (Bulut et al., 2013), the simplest equation method (Taghizadeh et al., 2013), the Lie group
analysis method (Chen and Jiang, 2015), the fractional characteristic method (\Wu, 2011), the auxiliary equation method
(Seadawy, 2017; and Akbulut et al., 2016), the finite element method (Deng, 2008), the differential transform method
(Momani etal., 2007), the Adomian decomposition method (Hu et al., 2008; and El-Sayed et al., 2010), the variational
iteration method (Inc, 2008), the finite difference method (Gao et al., 2012), the homotopy perturbation method (Gepreel,
2011) and the He’s variational principle (Inc, 2013), etc. But no method is uniquely substantial to examine the closed
form solutions to all kind of FNLEESs. That is why; it is very much indispensable to establish new techniques.

In this paper, we propose a new technique, called the modified fractional generalized (G’/G2 ) -expansion method, to
construct closed form analytic wave solutions to some FNLEEs in the sense of conformable fractional derivative (Khalil
et al., 2014). This effectual and reliable productive method shows its high performance through providing abundant
fresh and general solutions to the suggested equations. The obtained solutions might bring up their importance
through the contribution to analyze the inner mechanisms of physical complex phenomena of real world and make an
acceptable record in the literature.

2. Preliminaries and Methodology

2.1. Conformable Fractional Derivative

A new and simple definition of derivative for fractional order introduced by Khalil et al. (2014) is called conformable
fractional derivative. This definition is analogous to the ordinary derivative

d_l//: lim W(X+8)_W(X)
dx £—0 < !

d(x")
dx

where y/(X) :[0,00] > R and x > 0. According to this classical definition, — nx™ L. According to this

perception, Khalil has introduced ¢¢ order fractional derivative of ¥ as

: X+eX) —w(x
Taw(x):m‘”( " )=V o g <1

If the function ¥ is ¢ -differentiablein (O, r) for r > 0 and lim T_y(X) exists, then the conformable derivative
x—0*

at x =0 isdefinedasT y (0) = lim T w (X). The conformable integral of ¥ is
WV b iarid

r xy (t
IaW(X)ZJ‘r V.;I_Ea)dt1 I‘ZO1O<(XS1

This integral represents usual Riemann improper integral.

The conformable fractional derivative satisfies the following useful properties (Khalil et al., 2014):

If the functions U(X) and V(X) are a-differentiable at any point x >0, for o € (0,1] , then
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(@ T (au+bv)=aT (u)+bT, (v) Va,beR.
BT, (x")=nx"" VneR.

() T,(c) =0, where is any constant.
d) T, (uv) =uT, (v) + VT, (u).

(e) Ta (U /V) — VTa (U)V_z UTa (V) .

(f) If uis differentiable, then T_(u)(x) = x*™“ OI—u(x) -

dx

Many researchers used this new derivative of fractional order in physical applications due to its convenience,
simplicity and usefulness (Atangana et al., 2015; Cenesiz and Kurt, 2015; and Eslami and Rezazadeh, 2016).

2.2. Methodology

In this section, we discuss the main steps of the above-mentioned method to investigate exact analytic solutions of
FNLEEs. Consider the FNLEE in the independent variablest, x,, X,, ..., X _as

F (U, . U, DfY,, DYu,, ..., DUy, ., DLU,, ..., DLy, ..)=0 .(221)

where U = U(t, X, X,, ..., X ), 1 = 1, ..., kare unknown functions, F is a polynomial in U. and it’s various partial
derivatives of fractional order.

Making use of the composite wave variable transformation

U =U(t X, X, e, X )= U, E= &t X, X, 0 X)) .(22.2)

Equation (2.2.1) is turned into the following ordinary differential equation with respect to the variable &

Q(U,U’,U"U", ..)=0 (2.2.3)
where Q is a polynomial of U and its derivatives and the superscripts indicates ordinary derivatives with respect to &

We may, if possible, take the anti-derivative of Equation (2.2.3) term by term one or more times and integral constant
can be set to zero as soliton solutions are sought. Then the offered method is employed to construct closed form
analytic solutions of Equation. (2.2.3).

The main steps of the modified fractional generalized (G’/GZ)-expansion method is discussed for finding exact
analytic solutions to FNLEEs.

Step 1: Consider the solution of Equation (2.2.3) as follows:
U(§)=2 a0+ bo" (224)
where ¢ =¢ +(G’/GZ) .

wherea and b.(i=1, 2, ..., n) are arbitrary constants to be determined later with at least one of a_and b_as non-zero and
G = G(&) satisles the succeeding second order ordinary differential equation:

G'G?-2GG" = p(G')’ + uG'G? + o G* .(225)
where p, o and pare real constants. Equation (2.2.5) has turned into
(6'/6?) = p(G'/G?) +u(G'/G%)+o .(2.26)

Then we have the general solutions of Equation (2.2.5) (or equivalent to Equation (2.2.6) as follows:
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Jp?(Acos(Jp?g) + Bsin(Jp?é))

U(BCOS(«/Eé)—Asin(\/pT)-g)) if po>0,u=0
_ \pa\(Asinh(2M§)+Acosh(2M§)+B)l oot

O—(Asin h(2y[polé)+ Acosh (2ol ) - B)

(G’/Gz)z (A_§7+B)' if 6=0,p#0, u=0
u JZ(Acosh(J—/zg)+ Bsinh(VA/2¢)) N @27
2p Zp(Bcosh(x/—/2§)+Asmh J—/zg)
. M(Acos(\/_/zg)+85|n(\/z 25)) 8o ue0
2p 2p(Bcos( J=A/2¢)+ Asin (= /25))

where A and B are arbitrary constants and A = 1 - 4po.

Step 2: Consider the homogeneous balance between the highest order derivatives and the nonlinear terms appearing in
Equation (2.2.3) to determine the positive integer n. If the degree of U(¢) is deg [U(&)] = n, then, the degree of other
expressions will be

deg{d:jug(f)}—n+m, deg[um[dltj’f)jp}_ mn+ p(n+1)

Step 3: Substituting Equation (2.2.4) as well as Eq. (2.2.5) into Equation (2.2.3), we get a polynomial of (G’/G*), in which
we equate all the coefficients to zero. This procedure yields a system of algebraic equations which can be solved for
getting a, b, p, cand u as well as the values of the other necessary parameters.

Step 4: We substitute the values of a, b,, p, cand p together with the solutions given in Equation (2.2.7) into Equation
(2.2.4). This completes the determination of the solutions to the nonlinear evolution Equation (3.2.1).

3. Formulation of the Solutions

In this section, the suggested method is applied to unravel the space-time fractional mKdV equation and the space-time
fractional SRLW equation for their analytic solutions in closed form.

3.1. The Space-Time Fractional mKdV Equation

This well-known equation has the form
Dfu+nu’Dfu+tD*u=0,0<a<l ..(311)
Consider the wave variable transformation as
ulx, t)=U(&), E=kx +ct (312

Equation (3.1.1) with the aid of Equation (3.1.2) isturned into the following ordinary differential equation due to the
variable &

cU’+kuU?U" +k*U" =0 (313)

Taking anti-derivative of Equation (3.1.3) with integral constant r yields

r+cu +k'u3 +k*%U"=0 ..(3.1.4)

In view of the homogenous balance principle, Equation (3.1.4) serves the value of present in Equation (2.2.4) as
n =1 for which the solution Equation (2.2.4) takes the form
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U(§)=a,+ad+bod™ .(3.15)
where @ =¢ +(G’/GZ) .

Equation (3.1.4) along with Equations (3.1.5) and (2.2.5) makes a polynomial in ®. Equating like terms of this
polynomial to zero gives a set of algebraic equations for a, a,, b,, ¢, k and r. Solving this system of equations by
computer software Maple delivers the following outcomes:

Setl: o - 2(20=8) \ o g g AIAVENT | ay-bnr .(316)
2p T ' 2ot 6pt

where a, is an unknown constant.

_ 3oA [ -
Set2: =R TH) o g corAIANOIT L, by-Bne .(317)
2(s’p-su+o) 72t (s’p-su+o) 6r(s’p—su+o)

where b, is a free parameter.

\-6n7
Set 3: aﬂz_i(z‘gp_ﬂ)lbl:i(é‘zp—é‘u+6),k:i81 n
2p p 67
3 —
C :iL Vaenr(lzgzpz —125HP+u2 +8p0')
72p°t
4 A
= ialzsifm(?m ~3%up— o + o’ +26°p?) .(318)
p°T

where a, is an arbitrary parameter.

Inserting the values appeared in Equations (3.1.6)-(3.1.8) into the solution (3.1.5) leaves the followings:

U1(§)=321—§+81(G’/GZ) .(3.19)
WheregzialanAV_GnTx+a“_6mt.
72p% © 6pr
25p — -1
U, (&)= P78y (o a/e?) .(3.1.10)

Z(Szp—S,u+G)

3
where & =7 bnAy-bnr ., by=bnr

72T(Szp—5y +o-)3 - GT(Szp—Sy +0')

U3(§):%W(G’/G%%(Szp_g”+6)(‘”G'/G2)4 (3111
3 [
where ¢ =¢81’;27/;3im(1252p2 —12¢up + 1? +8po‘)Xi 4 “G;im t.

Egs. (3.1.9)-(3.1.11) together with the results in (2.2.7) make available fifteen solutions to Eq. (3.1.1) as follows:
Solution Family 1:

_ %@(Acos(ﬁg) + Bsin(Jp?g))
o (Boos({poe) - Asin({pot)) -(3112)

~aylpo] (Asin h(2y[pole) + Acosh(2,f[pole) + B)
) o Asinh(2yloolz)+ Acosh(2,[pols)- B) -(31.13)

U:(¢)

Uz (¢)
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ui(¢)= p(/f}i B)

y _alx/Z(Acosh(\/Z/Zg)+Bsinh(\/Z/Zc'f))
1(6)= 2p(Bcosh(JZ/2§)+Asinh(JZ/zg))

alx/E(Acos(\/I/z(f% Bsin(\/ﬁ/zg))
2p(Bcos(M/z.§)+ Asin(ﬁ/zg))

where £ = - anAY-bnr | a6

720 6pr

5

Solution Family 2:

TP LU B pG(ACOS Weoe) +Bsm(\/p76§))
2 (Szp+0' O'( cos \/p_oé —Asin Jp?é))

___hsp \po\(Asinh(Z\/Pidé)+Acosh(2\/p7§)+B) 1
) 1 G(Asmh 2\/,7,5 +Acosh(2\/p7§) )

(s p+0) A§+B
U (&) =- _b(2sp-pu) ACOSh «/—/2§)+BS|nh(J—/2§))
; 2(s’p- su+o 2p 2p Bcosh J—/2§)+A3|nh(J_/2§))
iy b [ Ees ) o) |
2 sp su+o 2p 2p Bcos —A/2§)+Asm( —A/zg))

3
where & —5— AVenT ,  Bybnr

72T(Szp—5y +o-)3 - GT(Szp—Sy +0')

Solution Family 3:

%Jp?(Acos(Jp?é) + Bsin(Jp?é))

Ui(8)= a(Bcos(\/p_og)—Asin(\/p_og))
e oo P AT} 050 )|
P o (Beos(Vpoe)-Asin(Jpoe))
Uz(g):a1 \po\(Asinh(2M§)+Acosh(2M§)+B)
’ a(ASMh(ZM&f%ACOSh(ZW&)—B)

o |

(gzpm)[g_W(Asinh(ZM§)+Acosh(zJp7§)+ B)J
o(Asin h(2mﬁ)+ Acosh(g/@g)_ B)

Page 39 of 47

.(3.1.14)

.(3.1.15)

.(3.1.16)

(3117

.(3.1.18)

.(3.1.19)

.(3.1.20)

.(3.121)

.(31.22)

(3123
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Ui(£) =—@+?(s%+o)(s—@} (3.1.24)

! _alx/K(Acosh(\/Z/zg)+Bsinh(\/Z/Zé))
(0)= 2p(Bcosh(JZ/2g)+Asinh(JZ/zg))

2 p JZ(Acosh(JZ/zg)+Bsinh(JZ/zg)) N
(s p—su+o) s—g— Zp(Bcosh(\/Z/Zf)+ASinh(\/Z/Zé)) ..(3.1.25)

+

o e

) %M(Acos(ﬂ/zf)Jr BSi”(M/Zf))
2p(BCO$(x/I/2§)+ Asin(\/z/zf))

5

2 p M(Acos(\/ﬁ/zg)+ Bsin(ﬁ/zg)) -
(s p—s,u+o) g—g— Zp(BCOS(M/Z§)+ASin(\/I/Zf)) ..(3.1.26)

+

o e

3 [ —
where g — 3 &N7ONT \/36’77(1252,32 ~12eup + 12 +3p6)xiwt.
72p°t 6p7

3.2. The Space-Time Fractional SRLW Equation

The space-time fractional SRLW equation is
D“u+ D}“u +uD{ (Dfu)+ D{uD{u+ D" (D*u) =0 ..(32.1)
The wave variable transformation
ulx, t)=U(&), E=kx+ct (322
reduces Equation (3.2.1) to the following fractional order nonlinear ordinary differential equation:
c?U" +k2U"+ckUU " +ckU"? +c*kU™ =0 ~(323)

where U! denotes the a-order fractional derivative due to & Integrate Equation (3.2.3) twice and the constants of
integration are supposed to be zero left

(e +ke)u + SuT s ckiur =0 (324)

Due to the homogenous balance method, Equation (3.2.4) ensures the value of n present in Equation (2.2.4) to be
n =2 and the solution Equation (2.2.4) takes the form

U(&)=2,+ad+a,d" +hd™" +b,d~ .(325)
where @ =¢ +(G’/GZ) .

Equation (3.2.4) with the help of Equations (3.2.5) and (2.2.5) provides a polynomial in ®@. Equating the coefficients
of like terms of this polynomial to zero gives a system of algebraic equations for a, a,, a,, b, b,, c and k. Solving this
system of equations by computer software Maple brings the following results:

2 2
Setl: g =7 2 (2p0+u2—68p0+682p2),81:i 12¢p (2ep—p)
c’A-1 c*A-1
a,=%F L'y’ b=0b,=0k=%F ¢ 3.2.6
e N e ~329)
. 12¢? _ 12¢?
Set 2: aoziipz(szp—su+6),81=+7pz(28p—ﬂ)
V=1-CcA -1-c°A
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12¢%p? _ c
a,=t—L— b=0b,=0k=F———+ (3.2
1A ’ V-1-c?A @27
_2c
Setd: & =F = 1(2p0'+y ~6spc +667p°), 3,=0,8,=0
2
b=+ 122C (25p0 3e“up — uo + el +25p) k=+ ZC
c°A-1 Cc°A-1
b,=F 12¢” (82;12+84p2—28}16+2£2p6—283yp+62) (3.2.8)
\/m e Y4
12¢%p 2 _ ¢
. =+t—Lr_(&’p-cu+o),a,=0,a,=0,k=F
Setd: & m( ) & 2 1-CA
2
bl:i%(25p0—352yp—y6+5p¢2+2£3p2)
-1-c
b, =+&(82y2+84p2—28}16+2£2p6—283/1p+62) (3.29)
VERFON (32
Inserting the values appeared in Equations (3.2.6)-(3.2.9) into the solution (3.2.5) leaves the followings:
_2c? , , 2
u,(&)=+ = 1{(2po+y2—Gspo+sup+4szp2)—p(2€p—u)(G/G2)+p2(s+G/Gz)} (3.2.10)
where g =5 x.ct
N
12¢%p
Uz(é):iﬂ{(a—g P) (2ep - ﬂ)(G/G )+P(5+G/G )} ..(3.2.11)
where ¢ X+cCt
-1-c*A
2
U3(§):$\/%{(2p6+,u2—GSPG+66‘2;)2)—6(28p6—382ﬂp—ﬂ6+8ﬂ2+283p2)(8+G’/GZ)71
C -
+6(e2u’ + &' p? —2euc + 2’ po 26 up +6° ) (e + G'/G? B (3212
(3212
where =+ &yt
VJePA-1
2
U4(§):1L(:2{p(52p—5y+6) (ngc 3sup — uo +su’ +2&°p )(8+G/G)
-1-c°A
+(szy2+g“p2—ZSuG+252po—ngup+oz)(g+G’/G2)iz} ..(3.2.13)

where g =7 % xict.
-1-c

Utilizing the results in (2.2.7) Equations (3.2.10)-(3.2.13) make available the following twenty solutions to Equation
(32.1):
Solution Family 1:

]

zsszp?(Acos(Jp?é)+ Bsin(Jp?é))

Ui(§)=+ (2P0_68p6+452p2)_ G(BCOS(Jp?g)—Asin(Jp?g))
. (Acos(Jp?.f)+ Bsm(J,;?g))
o(Bcos({/poé) Asin(Jp?g)) -(32.14)
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, - 2¢2 ) 2sp JpT(AS|nh(2Jp7§)+Acosh(2Jp7§)+B)
v (5)_+\ICZA—1{(ZPG 68p6+48p) (ASInh(Z\/pio'f)+ACOSh(\/pio'§) )

+p? [SJP?(Asin h(2lpolé)+ Acosh(2,fpolz )+ B)Jz
o Asinh(2,[polé) + Acosh(2,fpole) -B)

_ o 2c?
=F

C

2
2sp’A 2 A
2p0 —6gpo +4e%p? )+ +p°le———
)p(A§+B) p(AE+B)) |’

q
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.(32.15)

.(32.16)

(25p—y)x/Z(Acosh(\/Z/2§)+Bsinh(\/Z/Zg))

ui(¢) - {(
Uf(ﬁ) 2 {(2p0‘+y2/2—68p0'+28;lp+482p2)+

_ 2
=F
c’A
&

:

u \/Z(Acosh(\/Z/zg)+Bsinh(JZ/Zg)) 2
* p_f_ Q(Bcosh(\/Z/Zg)+ASinh(\/Z/zg))

2¢?

2(Bcosh(«/Z/2§)+ Asin h(x/Z/Zf))

.(32.17)

(25p—y)\/z(Acos(\/E/2§)+ Bsin(\/z/zg))

ur(e)=+

.

= {(2pa+y2/2—65p0+25yp+4gzpz)+ (
C°A-—

gp———

A(Acos M/zg +Bsm(\/z/2§))
1772 2(Bcos (v=a/2¢) +Asun(J_/2§))

where & —7 % it

JetA-1

Solution Family 2:

()= 222 : Jpo (Acos(Jpot) + Bsin((/pot |
Uz(é)—_\/ﬁ{(a—g p)-@sp—#){ G(Bcos(ﬁg)_Asin(\/p?g))

+p[8+ (Acos Jp_og +Bsm(\/p_o§))J }
(B (Jp?g) Asm(Jp?ﬁ))

2
+ 12cp

cos(ﬂ/2§)+Asin(«/I/2§))

M(Asin h(2W§)+ Acosh(2W§)+ B)

Ui()=2 m{(082p>+(25p”)[ o (Asinh(2fpoe )+ Acosh( ol ) - 8]

+p[5M(Asinh(z\/p?g)+Acosh(2\/p7§)+ B)Jz
o—(Asin h(2M§)+ Acosh(zmg)_B)

12¢%p

U;(g):im{(a—szp)+(28p—u)(/@]+p(8+p(A;B)ﬂ,

K
2p zp(Bcosh(\/Z/zﬁ)JfASinh(\/Z/zg))

\/Z(Acosh(\/Z/zg)+ Bsin h(x/Z/Zé))J

.(32.18)

.(32.19)

.(32.20)

.(32.21)
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V& (Acosh(A/2¢) + Bsinn( V3 /2)) |
e 8_5_ Zp(BCOSh(\/—/ §)+Asinh(JZ/2§)) ' ~322)

s {5 5] o )
Uz(g)__\/ﬁ{(a—s p)+(2ep— #){Zl:) ZP(BCOS(M/zg)JrAsin(ﬂ/%))

u M(Acos(ﬂ/&f%Bsin(«/I/zg)) i
T 2p(Bcos(M/2§)+Asin(ﬂ/zg)) 1 ~(32.23)
where £ =7F X +ct.
-1-c’A
Solution Family 3:
U;(é):i\/;Z;_l{(po—35po+352p2)—6(8p0+s3p2)

-1

JE(ACOS(Jp_Gg)+ Bsin(JpTyé))
a(Bcos(\/p_oé)— Asin(\/p_aé))

X
(25
+

+3(¢94p2 +2¢°po +O'2)

Jp?(ACOS(Jp?é)+ Bsin(\/p_ag)) 2}

e G(BCOS(\/p_Gg)—ASin(\/p_Gg)) -(32.24)
Uz (¢ \/M;l{(po 3spo+3£p) 6(8p0‘+€3p2)
\pa\ Asmh 2Jp7§)+Acosh(A/p7§)+B) N
+3(84p2+282p0'+0'2)
0'( smh 2Jp7§)+Acosh(2Jp7§) )
\pa\ Asmh 2\/p75)+Acosh(2\/p7§)+B) X
a Asmh 2Jp7§)+ ACOSh(Z\/piaé) ) ! -(32.29)
3 - 4c 2 2 3 .2 A B
U3(§):+m{(po 3gpo +3e°p )—6(8p0‘+8 P )(S—M]
+3(54p2+282p(7+(72)(g_p(A?+B)j }, (3226)

2¢?

U; (¢) :¥ﬁ{(2pa + 1 —66‘p6+682p2)

—G(ZSpO' —3g?up — uo +su’ + 253p2)

p JZ(Acosh(JZ/zg)+Bsinh(JZ/zg)) -
19720 2p(Beosh(va/2¢) + Asinh(va/2¢ )

+6(.szu2 +8'p?—2euc + 28 po —28°up +02)
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p JZ(Acosh(JZ/2§)+Bsinh(JZ/zg)) N
15720 2p(Bcosh(JZ/2§)+Asinh(JZ/zg)) ’

;2 {(2p6+y2—65p0+652p2)

c’A—

wC
g
e
~
1]
+]
]

—G(ZSpO' —3gup — uo +su’ + 253p2)

“ M(Acos(ﬁ/zg)wsin(ﬂ/zg)) h
1572 2p(Beos(v-a/2¢) + Asin(v-4/2¢))

+6(.szu2 +8'p?—2suc + 28 po —28°up +02)

x —L—M(ACOS(M/Z§)+Bsin(\/z/zg)) 2
£ 2p ZP(BCOS(M/Z§)+ASin(M/zg)) ,

where &£ =+ x+ct.

c
Jeta-1

Solution Family 4:

@(Acos(@g% Bsin(\/p_of

Uj(g):i _1_C2A{p(52p+o)—28p(o+szp)[8+ G(BCOS(\/P?g)_ASin(\/p_Gg))

+(&*p* +28°po+c*) 8+\/p_a(ACOS(\/p70§)+BSin(‘/p?§)) ’
i P a(Bcos(Jp_ag)—Asin(Jp?g)).

12¢?

Uf(f)f—rm{

\/W(Asin h(2M§)+ Acosh(2W§)+ B)
o(Asin h(2W§)+Acosh(W§)— B)

Jpo](Asinn(2fpole)+ Acosh(2pol) +B) ;
O—(Asin h(2yfpols)+ Acosh(Z\/Wé)—B) ’

p(82p+6)—28p(6 +52p)
-1

+(,s“p2 +28%po +O'2)

12¢?

: 2 : A Y
U4(§):im{p(s p+O‘)—28p(O‘+8 p)(g_p(A§+B)J

+(84p2 +282p0' +O_2)(g_p(A§A+B)] },

12¢?

I ey
o

et
2p 2p

{p(szp—gy +G)—(28p6 —3&’up— o+’ + 283,02)

Acosh(A/2¢)+ Bsinh(JZ/zg)) -
Bcosh(\/Z/Z.f)+ Asin h(«/Z/Zg))

+(szu2 +&*p?—2suc +282p0'—253/1p+<72)
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.(32.27)

.(3.2.28)

.(3.2.29)

.(32:30)

.(32.30)
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-2

JZ(ACOSh(«/Z/Z&)+ Bsin h(x/Z/Zﬁ))

o gt _
Y Zp(Bcosh(\/Z/Z.f)+Asin h(\/Z/Zg)) ’ .(32.32)
Uf(.f):+_1127(:c{p(£ p—gﬂ+G)—(2€p6—382ﬂp—ﬂ6+8ﬂ2+283p2)

. —A Acos(J_/2§)+BS|n(J—/2§))
2p 2, Bcos(J_/zg)+As|n(J_/z.§))

2

+(szy +&*p? —2suc + 28’ po - 28 up +o )

_A Acos(x/_/2§)+Bsm(\/_/2§))
2p Bcos(J_/zg)+As|n(J_/2§)) ’ ~(32.33)

where § =F————x+ct.
—-1-c’A

4. Conclusion

The core aim of this study was to make available further general and fresh closed form analytic solutions to the
nonlinear space-time fractional mKdV equation and the nonlinear space-time fractional SRLW equation through
the proposed modified fractional generalized (G’/Gz)-expansion method. The offered method has successfully
presented attractive solutions to the suggested equations and shown its high performance. So far, we know the
achieved solutions are not available in the literature and might create a milestone in research area. Therefore, it
may be claimed that the modified fractional generalized (G’/Gz)-expansion method in deriving the closed form
analytical solutions is simple, straightforward and productive. This method may be taken into account for further
implementation to investigate any fractional order nonlinear evolution equations arising in various fields of
science and engineering. The obtained solutions in terms of trigonometric function, hyperbolic function and
rational function containing many free parameters are claimed to be fresh and further general which will take place
in the literature.
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